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Nonlinear diffusive surface waves
in porous media
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(Received 22 October 1996 and in revised form 20 April 1997)

A fully nonlinear, diffusive, and weakly dispersive wave equation is derived for
describing gravity surface wave propagation in a shallow porous medium. Darcy’s flow
is assumed in a homogeneous and isotropic porous medium. In deriving the general
equation, the depth of the porous medium is assumed to be small in comparison
with the horizontal length scale, i.e. O(µ2) = O(h0/L)2 � 1. The order of magnitude
of accuracy of the general equation is O(µ4). Simplified governing equations are also
obtained for the situation where the magnitude of the free-surface fluctuations is
also small, O(ε) = O(a/h0) � 1, and is of the same order of magnitude as O(µ2).
The resulting equation is of O(µ4, ε2) and is equivalent to the Boussinesq equations
for water waves. Because of the dissipative nature of the porous medium flow, the
damping rate of the surface wave is of the same order magnitude as the wavenumber.
The tide-induced groundwater fluctuations are investigated by using the newly derived
equation. Perturbation solutions as well as numerical solutions are obtained. These
solutions compare very well with experimental data. The interactions between a
solitary wave and a rectangular porous breakwater are then examined by solving the
Boussinesq equations and the newly derived equations together. Numerical solutions
for transmitted waves for different porous breakwaters are obtained and compared
with experimental data. Excellent agreement is observed.

1. Introduction
The Dupuit approximation, assuming that the flow is essentially horizontal and the

pressure field hydrostatic, is a good approximation in many applications for ground-
water flows in an unconfined aquifer (e.g. Bear 1972). The Dupuit approximation
is the same as the shallow-water approximation commonly used in studying surface
water waves or open channel flows. These approximations are valid as long as the
horizontal scale of flow is much larger than the vertical scale. Combination of the
Dupuit approximation and Darcy’s law for a saturated flow in porous media results
in the well-known ‘Boussinesq equation’ for unsteady flow in a phreatic aquifer (Bear
1972)

∇ · (KH∇H) = ne
∂H

∂t
, (1.1)

in which H is the thickness of the aquifer, K the depth-averaged permeability, ne the
effective porosity and ∇ the horizontal gradient. This nonlinear diffusion equation
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has been used as the mathematical model for describing many groundwater flow
phenomena, including the tide-induced groundwater table fluctuations (e.g. Philip
1973; Knight 1982; Nielsen 1990; Nielsen et al. 1996).

In an attempt to include the effects of vertical acceleration, Dagan (1967) and
Parlange et al. (1984) derived a set of perturbation equations with the small parameter
characterizing the shallowness of the aquifer. While their leading-order equations
remain the same as (1.1), Dagan’s second-order equations, forced by the leading-order
solutions, contained some typographical errors. However, those typographical errors
did not affect the remainder of Dagan’s paper. In both studies the bottom of the
aquifer was assumed to be flat. Parlange et al. limited their analysis to one-dimensional
periodic flows.

In this paper we rederive the flow equations in a shallow phreatic porous medium
by using two parameters

ε =
a

h0

, µ2 =

(
h0

L

)2

, (1.2)

where a represents the phreatic surface displacement measured from the still water
level, h0 the characteristic aquifer thickness and L the characteristic horizontal scale
of the aquifer. In the general derivation, the parameter representing the shallowness
of the aquifer, µ2, is assumed to be small, while the parameter for nonlinearity, ε,
remains O(1). The resulting equations are truncated and are accurate up to O(µ4). The
general equations are two-dimensional and the porous medium thickness can vary in
the horizontal dimensions.

A set of simplified equations is derived based on the ‘Boussinesq approximation’,
which assumes that the nonlinearity parameter, ε, is of the same order of magnitude as
µ2. The characteristics of these equations are studied extensively for the constant-depth
case. Basically solutions to the governing equations represent nonlinear diffusive waves
for which the spatial damping rate is of the same order magnitude as the wavenumber.
The inclusion of the O(µ2) term modifies not only the phase (wavenumber), but also
the damping rate.

One-dimensional equations are then used to study two practical problems: (i)
the tide-induced free-surface fluctuations and (ii) the transmission and reflection of
solitary waves by a porous breakwater. For the first problem, analytical perturbation
solutions as well as numerical solutions are obtained with tidal effects being introduced
through the boundary condition. Analytical and numerical results are compared
with experimental data. Good agreement is observed. Inclusion of the higher-order
term, O(µ2), improves the agreement significantly. In the second problem numerical
solutions are obtained for the interactions between an incident solitary wave and
a rectangular porous breakwater. The conventional Boussinesq equations are used
to calculate the incident, reflected and transmitted solitary waves. Inside the porous
breakwater a linearization process is used to convert the nonlinear resistance formula
to a Darcy-type resistance (e.g. Madsen 1974). Numerical solutions are compared
with experimental data (Vidal et al. 1988). Excellent agreement is observed.

This paper is organized in the following manner. In § 2 the formulation of a three-
dimensional Darcy flow with a free surface is reviewed first. The general derivation
of the governing equations for fully nonlinear long waves is given in § 3. We show
that Parlange et al.’s (1984) perturbation equations are special cases of our general
equations. The Boussinesq approximation is introduced into the general governing
equations in § 4. The basic characteristics of the simplified equation are investigated.
Analytical and numerical solutions are presented in § 5 and § 6, respectively, for both
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tide-induced groundwater fluctuations and the interactions between solitary waves
and a porous breakwater.

2. Darcy’s flows and boundary conditions
The free-surface flow of an incompressible fluid in a rigid, homogeneous and

isotropic porous medium is considered here. The flow obeys Darcy’s law so that the
seepage velocity is proportional to the gradient of the piezometric head, i.e.

u = −K∇3Φ, (2.1)

where

Φ =
P

γ
+ z, (2.2)

P is the pressure, γ = ρg the specific weight, K the permeability, z the vertical
axis, and ∇3 the three-dimensional gradient vector. In the vertical direction the flow
domain is bounded by an impermeable boundary, z = −h(x, y), and a free surface,
z = ζ(x, y, t). The continuity requires that ∇3 · u = 0. From (2.1) we obtain

∇2
3Φ = 0, −h < z < ζ, (2.3)

for a homogeneous medium, K = constant. On the free surface, the pressure is a
constant which can be assigned as zero. Thus, from (2.2)

Φ = ζ on z = ζ. (2.4)

The kinematic free-surface boundary condition requires

∂ζ

∂t
− K

ne
(∇Φ · ∇ζ) +

K

ne

∂Φ

∂z
= 0 on z = ζ, (2.5)

where ne is the effective porosity and ∇ =
(
∂/∂x, ∂/∂y

)
the horizontal gradient. Along

the impervious bottom, z = −h, the normal flux vanishes:

∂Φ

∂z
= −∇Φ · ∇h on z = −h. (2.6)

Introducing L as the horizontal length scale of the problem and h0, the typical
depth, as the vertical scale and a as the scale of the free-surface displacement, we can
normalize the variables as follows:

ζ → aζ, z → h0z, (x, y)→ L(x, y), (2.7a)

t→ L2ne

Kh0

t, Φ→ aΦ. (2.7b)

The resulting dimensionless governing equation and boundary conditions can be
written as

µ2∇2Φ+
∂2Φ

∂z2
= 0, −h < z < εζ, (2.8a)

Φ = ζ on z = εζ, (2.8b)

µ2

[
∂ζ

∂t
− ε∇Φ · ∇ζ

]
+
∂Φ

∂z
= 0 on z = εζ, (2.8c)

∂Φ

∂z
+ µ2∇Φ · ∇h = 0 on z = −h, (2.8d)

where two parameters, µ2 and ε, have been defined in (1.2).
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An alternative way of scaling the problem is to specify the time scale as T . The
length scale L can be found from (2.7) as

L =

(
Kh0T

ne

)1/2

. (2.9)

If one is interested in examining the response of a coastal phreatic aquifer to tidal
fluctuations, the following parameters can be used: K = 10−2–10−4 m s−1, ne =
O(10−1), h0 = O(10 m), T = 12 hr. From (2.9) the length scale is about 20–200 m.
Therefore, the parameter µ2 is of order of magnitude O(10−1–10−2). In this paper,
we consider a shallow aquifer such that O(µ2) � 1. If the tidal range is of order of
magnitude 1 m, i.e. a = O(1 m), the parameter ε is also of order of magnitude O(10−1).
However, to find general equations, the parameter ε is assumed to be an order one
quantity.

We remark here that the boundary-value-problem given in (2.8) is the same as
the one derived for water waves with the exception of the dynamic free-surface
boundary condition (2.8b). The depth-integrated continuity equation can be derived
by integrating (2.8a) from −h to εζ and using the boundary conditions. Thus

− ∇ ·
∫ εζ

−h
∇Φ dz +

∂ζ

∂t
= 0, (2.10)

which is an exact equation.

3. Perturbation solutions for shallow water
For small µ2 we seek for the following perturbation solutions:

Φ(x, y, z, t) =

∞∑
n=0

µ2nΦn(x, y, z, t). (3.1)

Using the Laplace equation (2.8a) and the bottom boundary condition (2.8d), we can
express the preceding equation up to O(µ2) in terms of Φα(x, y, t) = Φ(x, y, zα(x, y), t),
in which zα(x, y) is a prescribed surface. Thus

Φ(x, y, z, t) = Φα(x, y, t) + µ2
[
(zα − z)∇ · (h∇Φα) + 1

2

(
z2
α − z2

)
∇2Φα

]
+ O(µ4). (3.2)

The procedures for obtaining the equation above have been given in Chen & Liu
(1995) for the water wave problem and will not be repeated here. The corresponding
horizontal and vertical velocity can be expressed as

− ∇Φ = −∇Φα − µ2∇
[
(zα − z)∇ · (h∇Φα) + 1

2

(
z2
α − z2

)
∇2Φα

]
+ O(µ4), (3.3a)

− ∂Φ

∂z
= µ2

{
∇ · (h∇Φα) + z∇2Φα

}
+ O(µ4). (3.3b)

Similarly to the long water wave problem, the leading-order vertical velocity is of
O(µ2) and is linear in z, while the leading-order horizontal velocity is uniform in the
z-direction.

Substituting (3.2) into the continuity equation (2.10), we obtain

∂ζ

∂t
− ∇ · [(εζ + h)∇Φα]− µ2∇ ·

{
(εζ + h)∇

[
zα∇ · (h∇Φα) + 1

2
z2
α∇2Φα

]
− 1

2

(
ε2ζ2 − h2

)
∇ [∇ · (h∇Φα)]− 1

6

(
ε3ζ3 + h3

)
∇
(
∇2Φα

)}
= O(µ4). (3.4)
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From the dynamic boundary condition (2.8b) we obtain

ζ = Φα + µ2
[
(zα − εζ)∇ · (h∇Φα) + 1

2

(
z2
α − ε2ζ2

)
∇2Φα

]
+ O(µ4). (3.5)

Taking the horizontal gradient of the preceding equation yields

∇ζ = ∇Φα + µ2∇
[
(zα − εζ)∇ · (h∇Φα) + 1

2

(
z2
α − ε2ζ2

)
∇2Φα

]
. (3.6)

Following Chen & Liu (1995) we defined the horizontal velocity vector at z = zα as

uα = −(∇Φ) |z=zα
= −∇Φα − µ2

[
(∇zα)∇ · (h∇Φα) + (zα∇zα)∇2Φα

]
+ O(µ4). (3.7)

Equations (3.4) and (3.6) can be rewritten in terms of ζ and uα as

∂ζ

∂t
+ ∇ · [(εζ + h)uα] + µ2∇ ·

{[
z2
α

2
(εζ + h)− 1

6

(
h3 + ε3ζ3

)]
∇ (∇ · uα)

+
[
zα(εζ + h) + 1

2

(
h2 − ε2ζ2

)]
∇ [∇ · (huα)]

}
= O(µ4), (3.8)

∇ζ = −uα − µ2
{

(zα − εζ)∇ [∇ · (huα)] + 1
2

(
z2
α − ε2ζ2

)
∇ (∇ · uα)

−∇(εζ)∇ · (huα)− 1
2
∇
(
ε2ζ2

)
∇ · uα

}
+ O(µ4). (3.9)

For a given zα(x, y) the above equations are the governing equations for ζ and uα.
Equation (3.8) is the continuity equation, while (3.9) is the momentum equation. We
reiterate here that in both equations the parameter ε has been assumed to be of O(1).
Moreover, the water depth can also vary rapidly.

From (3.9) uα = −∇ζ+O(µ2) and therefore, without reducing the order of magnitude
of accuracy the velocity uα can be written in terms of ζ as

uα = −∇ζ+ µ2
{

(zα − εζ)∇ [∇ · (h∇ζ)] + 1
2

(
z2
α − ε2ζ2

)
∇(∇2ζ)

−∇(εζ)∇ · (h∇ζ)− 1
2
∇
(
ε2ζ2

)
∇2ζ
}

+ O(µ4). (3.10)

Substituting (3.10) into (3.8) yields the governing equation for the free-surface dis-
placement ζ:

∂ζ

∂t
− ∇ · [(εζ + h)∇ζ] + µ2∇ ·

{
1
6

(
h3 + ε3ζ3

)
∇
(
∇2ζ
)
− 1

2

(
h2 − ε2ζ2

)
∇ [∇ · (h∇ζ)] −(εζ + h)∇

[
εζ∇ · (h∇ζ) + 1

2
ε2ζ2∇2ζ

]}
= O(µ4). (3.11)

It is interesting to note that zα disappears in the equation for ζ. This is different from
the equivalent depth-averaged equations for water waves, which depend on zα (e.g.
Chen & Liu 1995).

In the case that the bottom is flat, h = constant, the governing equation can be
simplified to

∂ζ

∂t
− ∇ · [(εζ + h)∇ζ] +µ2∇ ·

{
1
6

(
ε3ζ3 + 3ε2ζ2h− 2h3

)
∇
(
∇2ζ
)

−(εζ + h)∇
[
εζ
(
h+ 1

2
εζ
)
∇2ζ
]}

= O(µ4). (3.12)

For the one-dimensional case, i.e. ∂/∂y = 0, one obtains

∂ζ

∂t
− ∂

∂x

[
(εζ + h)

∂ζ

∂x

]
+µ2 ∂

∂x

{
1
6

(
ε3ζ3 + 3ε2ζ2h− 2h3

) ∂3ζ

∂x3

−(εζ + h)
∂

∂x

[
εζ
(
h+ 1

2
εζ
) ∂2ζ

∂x2

]}
= O(µ4). (3.13)
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Parlange et al. (1984) derived a set of perturbation equations in terms of the
total water depth. The relation between Parlange et al.’s equations and (3.13) can be
explained as follows. By letting H be the total water depth,

H = εζ + h, (3.14)

one can rewrite (3.13) as

∂H

∂t
− ∂

∂x

(
H
∂H

∂x

)
+ µ2 ∂

∂x

{
H

6

[
ε2ζ2 + 2h(εζ − h)

] ∂3H

∂x3

−H
2

∂

∂x

[
(H2 − h2)

∂2H

∂x2

]}
= O(µ4), (3.15)

which can be further simplified, after some mathematical manipulations, to

∂H

∂t
− ∂

∂x

(
H
∂H

∂x

)
− µ2 1

3

∂2

∂x2

(
H3 ∂

2H

∂x2

)
= O(µ4). (3.16)

Expanding H in terms of the small parameter µ2 as

H = H0 + µ2H1 + O(µ4), (3.17)

we obtain the leading-order equations for H:

O(1):

∂H0

∂t
− ∂

∂x

(
H0

∂H0

∂x

)
= 0, (3.18)

O(µ2):

∂H1

∂t
− ∂2

∂x2
(H0H1) = µ2 1

3

∂2

∂x2

(
H3

0

∂2H0

∂x2

)
. (3.19)

Equations (3.18) and (3.19) agree with the one-dimensional equations derived by
Parlange et al. (1984). As noted in § 1, Dagan’s (1967) equations also agree with (3.18)
and (3.19) after some typographic errors are corrected. Furthermore, the leading-order
equation, (3.18), is the dimensionless form of (1.1) under the Dupuit approximation.

Since the free-surface displacement is assumed to be finite, the governing equations
for ζ, (3.11), (3.12) or (3.13), are highly nonlinear. The highest order of differentiation
is fourth order. To understand these equations and the effects of the shallowness of
the aquifer, in the following sections the free-surface displacement will be assumed to
be small to different degrees.

4. Boussinesq approximation
As mentioned in § 3 for some physical situations the free-surface displacement is

small in comparison with depth, so we can assume that

O(ε) = O(µ2)� 1, (4.1)

and the governing equation for ζ, (3.11), can be simplified to

∂ζ

∂t
− ∇ · [(εζ + h)∇ζ]− µ2∇ ·

{
1
2
h2∇ [∇ · (h∇ζ)]− 1

6
h3∇

(
∇2ζ
)}

= O(µ4, µ2ε). (4.2)
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This equation is equivalent to the Boussinesq equations for water waves. For the
simplest one-dimensional case in which the water depth is a constant, (4.2) can be
simplified to

∂ζ

∂t
− ε ∂

∂x

(
ζ
∂ζ

∂x

)
− h∂

2ζ

∂x2
− 1

3
µ2h3 ∂

4ζ

∂x4
= 0. (4.3)

The leading-order terms of the above equation are

∂2ζ

∂x2
=

1

h

∂ζ

∂t
+ O(ε, µ2). (4.4)

Hence, the last term in (4.3) can be represented by

∂4ζ

∂x4
=

1

h

∂3ζ

∂x2∂t
+ O(ε, µ2) =

1

h2

∂2ζ

∂t2
+ O(ε, µ2). (4.5)

The alternative forms of (4.3) are

∂ζ

∂t
− ε ∂

∂x

(
ζ
∂ζ

∂x

)
− h∂

2ζ

∂x2
− 1

3
µ2h

∂2ζ

∂t2
= 0, (4.6a)

∂ζ

∂t
− ε ∂

∂x

(
ζ
∂ζ

∂x

)
− h∂

2ζ

∂x2
− 1

3
µ2h2 ∂3ζ

∂x2∂t
= 0. (4.6b)

The corresponding dimensional form of these equations can be derived by substituting
the dimensional variables, (2.7), into (4.3), (4.6a) and (4.6b). Thus

ne

K

∂ζ

∂t
− ∂

∂x

(
ζ
∂ζ

∂x

)
− h0

∂2ζ

∂x2
− 1

3
h3

0

∂4ζ

∂x4
= 0, (4.7a)

ne

K

∂ζ

∂t
− ∂

∂x

(
ζ
∂ζ

∂x

)
− h0

∂2ζ

∂x2
− 1

3
h0

(ne
K

)2 ∂2ζ

∂t2
= 0, (4.7b)

ne

K

∂ζ

∂t
− ∂

∂x

(
ζ
∂ζ

∂x

)
− h0

∂2ζ

∂x2
− 1

3

h2
0ne

K

∂3ζ

∂x2∂t
= 0. (4.7c)

Some of the fundamental characteristics of (4.7a–c) are discussed in § 4.1.

4.1. Linear diffusive waves

For very small-amplitude motions, O(ε)� O(µ2)� 1, the linearized versions of (4.3),
(4.6a) and (4.6b) can be written as

∂ζ

∂t
− h∂

2ζ

∂x2
− 1

3
µ2h3 ∂

4ζ

∂x4
= 0, (4.8a)

∂ζ

∂t
− h∂

2ζ

∂x2
− 1

3
µ2h

∂2ζ

∂t2
= 0, (4.8b)

∂ζ

∂t
− h∂

2ζ

∂x2
− 1

3
µ2h2 ∂3ζ

∂x2∂t
= 0. (4.8c)

We remark here that similar equations can be obtained by considering different
physical effects. For instance, Parlange & Brutsaert (1987) derived an equation for
free-surface groundwater flow with a capillary correction, which has the same form
as (4.8c). If the flow is periodic in time with a frequency ω, the leading-order terms of
(4.8a–c) represent a damped wave motion. The third term, which is of O(µ2), modifies
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the phase speed and spatial damping rate by including the depth effect. Assuming
that the periodic solution can be written as

ζ = a0 ei(kx−ωt), (4.9)

and substituting into (4.8) yields

− iω + hk2 − 1

3
µ2

 h3k4

−ω2h
iωh2k2

 = 0, (4.10a–c)

which can be interpreted as the dispersion relation for the system. The parameter k
is the root of the dispersion relation and can be a complex quantity; the real part
denotes the wavenumber and the imaginary part the spatial damping rate in the
direction of wave propagation. Specifically (4.10a–c) can be solved for k2 as

k2 =



3

2h2µ2

[
1−

(
1− 4

3
iωµ2h

)1/2
]

(4.11a)

1

h

(
iω − 1

3
µ2hω2

)
(4.11b)

iω

h
(
1− 1

3
iωµ2h

) , (4.11c)

where the nonsensical solution for k2 in (4.11a) has been omitted.
The leading-order solution, as µ2 → 0, of (4.11a–c) can be expressed as

k = (1 + i)
( ω

2h

)1/2

, (4.11)

and the corresponding dimensional form is

k =

(
ne

K h0

)1/2

(1 + i)
(ω

2

)1/2

. (4.12)

For a surface wave with a given frequency ω, (4.11) or (4.12) implies that the wave
will be damped out within a few wavelengths, because the imaginary part of (4.11)
or (4.12), which is the spatial damping coefficient, is of the same order of magnitude
as the real part. The dispersion relations in (4.11a–c) can also be rewritten as

ω =



−ihk2
(
1− 1

3
µ2h2k2

)
(4.14a)

3i

2µ2h

[
1±

(
1 + 4

3
µ2h2k2

)1/2
]

(4.14b)

−ihk2

1 + 1
3
µ2h2k2

. (4.14c)

When the wavenumber is given, the real part of (4.14a–c) represents the wave
frequency. The imaginary part denotes the temporal damping rate, if negative. If
the imaginary part of ω, Im(ω), is positive, the corresponding equation is unstable.
It is quite obvious that from (4.14a) Im(ω) 6 0 only if µ2k2 6 3. Hence, (4.8a) is
conditionally stable. From (4.14b) one of the imaginary roots of ω is always positive.
Thus, (4.8b) is unstable. On the other hand, the imaginary root of (4.14c) is always
negative. Consequently, (4.8c) is unconditionally stable. In the remainder of this paper,
(4.6b), which is the nonlinear version of (4.8c), will be used in the discussions.
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5. Perturbation solutions for the tide-induced groundwater flow
In this section, we shall try to obtain a perturbation solution for (4.6b) subject to

the forcing of a periodic tide. To simulate the effect of tide on the groundwater table,
we assume that at the position x = 0 the aquifer is in contact with an ocean in which
the water level undergoes periodic oscillations. So, we impose the following boundary
condition:

ζ(0, t) = eiωt. (5.1)

The aquifer extends to infinity in the x-direction, and the surface elevation becomes
horizontal as x→∞, i.e.

∂ζ(x, t)

∂x
= 0, x→∞. (5.2)

The initial free-surface displacement is set to be zero, i.e.

ζ(x, 0) = 0. (5.3)

By the Boussinesq approximation, (4.1), we can express µ2 in terms of ε as

µ2 = αε, (5.4)

where α is a quantity of O(1). Now we seek the solution of (4.6b) subject to the
boundary conditions (5.1) and (5.2) in the following perturbation form:

ζ = ζ0 + εζ1 + O(ε2). (5.5)

Substituting (5.5) into (4.6b), (5.1) and (5.2) and collecting terms of like powers of ε,
one can obtain the following set of equations for ζ of different of orders of magnitude:

O(ε0):

∂ζ0

∂t
− h∂

2ζ0

∂x2
= 0, 0 < x < ∞, (5.6a)

ζ0(0, t) = eiωt, (5.6b)

∂ζ0(x, t)

∂x
= 0, x→∞. (5.6c)

O(ε):

∂ζ1

∂t
− h∂

2ζ1

∂x2
=

∂

∂x

(
ζ0

∂ζ0

∂x

)
+

1

3
αh2 ∂

3ζ0

∂x2∂t
, 0 < x < ∞, (5.7a)

ζ1(0, t) = 0, (5.7b)

∂ζ1(x, t)

∂x
= 0, x→∞. (5.7c)

Because the only driving force of the flow comes from the periodic tide at the
boundary, we can expect that the motions in the aquifer will approach a periodic
state eventually. Therefore, we shall pursue a periodic solution for ζ. As shown in
§ 4.1, the leading-order periodic solution for ζ0 is

ζ0 = ei(k0x−ωt), k0 = (1 + i)
( ω

2h

)1/2

, (5.8)

which represent a free-surface displacement decaying with distance from the boundary
while oscillating in both space and time. The decay rate is of the same order magnitude
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as the wavenumber, because k0 is a complex number and the imaginary part is equal
to the real part.

Substituting (5.8) into the right-hand-side of (5.7a), one has

∂ζ1

∂t
− h∂

2ζ1

∂x2
= −k2

0e2i(k0x−ωt) − 1
4

(
k0 − k∗0

)2
ei(k0−k∗0)x + 1

3
iαh2k2

0ωei(k0x−ωt), 0 < x < ∞,

(5.9)

where the asterisk denotes the complex conjugate. There are three forcing terms
for ζ1: the first-harmonic, the second harmonic and the steady terms. While the
first-harmonic term is due to the linear high-order derivative term, the steady and
second-harmonic terms are from the nonlinear interactions of the leading-order waves.
The first harmonic term is a secular term and resonates with the operator on the left-
hand side. The particular solution for the secular term is ζ1 ∝ xei(k0x−ωt). Therefore,
the ratio between the O(ε) solution and the O(ε0) solution, ζ1/ζ0, becomes unbounded
in x. In order to eliminate the secular term, we expand the wavenumber in a series
form

k = k0 + εk1 + O(ε2), (5.10)

and take

ζ0 = ei(kx−ωt). (5.11)

Then, the leading-order equation, (5.6a), remains the same, but the governing equation
in O(ε), (5.7a), becomes

∂ζ1

∂t
− h∂

2ζ1

∂x2
=

∂

∂x

(
ζ0

∂ζ0

∂x

)
+

1

3
αh2 ∂

3ζ0

∂x2∂t
− 2k0k1hζ0,

= −k2
0e2i(k0x−ωt) − 1

4

(
k0 − k∗0

)2
ei(k0−k∗0)x

+
(

1
3
iαh2k2

0ω − 2k0k1h
)

ei(k0x−ωt), 0 < x < ∞. (5.12)

To eliminate the secular term, we must require

k1 = 1
6
iαk0hω, (5.13)

which is also a complex number and represents the effects of finite depth on the
wavenumber and damping rate. We remark here that (5.13) can also be obtained
directly from (4.11a–c). Therefore, the equation for ζ1 is now

∂ζ1

∂t
− h∂

2ζ1

∂x2
= −k2

0e2i(k0x−ωt) − 1
4

(
k0 − k∗0

)2
ei(k0−k∗0)x, 0 < x < ∞. (5.14)

Solving (5.14) with boundary conditions (5.7b) and (5.7c), we obtain

ζ1 =
1

2h

[
ei(
√

2k0x−2ωt) − e2i(k0x−ωt)
]

+
1

4h

[
1− ei(k0−k∗0)x

]
. (5.15)

Because k0 is complex number with positive imaginary part, the oscillating terms in
(5.15) vanish far away from the interface of the ocean and aquifer, i.e.

ζ1 =
1

4h
, x→∞. (5.16)

This implies that the groundwater level will rise in the entire aquifer due to the effect
of the periodic tidal forcing. This phenomenon has been observed in the field (e.g.
Nielsen 1990). We remark here that the rise of the groundwater level is similar to the
mean free-surface setdown and setup in the shoaling and breaking of water waves.
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In summary, the perturbation solution of the nonlinear wave equation (4.6b) subject
to periodic tidal forcing is

ζ = ei(kx−ωt) +
ε

4h

{
2
[
ei(
√

2k0x−2ωt) − e2i(k0x−ωt)
]

+
[
1− ei(k0−k∗0)x

]}
, (5.17a)

k = k0

(
1 + 1

6
iµ2ωh

)
, k0 = (1 + i)

( ω
2h

)1/2

. (5.17b)

Similar perturbation solutions can also be obtained for (4.3) and (4.6a). The profiles of
ζ along x at ωt = 0, π/2, π, 3π/2 are presented in figure 1 with different parameters,
according to the solution (5.17a) with h = 1. Figure 1 clearly demonstrates the
nonlinear effect, which induces a rise of the mean water level in the aquifer. But the
dominating mechanism inside the aquifer is diffusion. The µ2-term affects the spatial
variation of the free surface significantly.

The corresponding dimensional form of (5.17a) is

ζ = aei(kx−ωt) +
a2

4h0

{
2
[
ei(
√

2k0x−2ωt) − e2i(k0x−ωt)
]

+
[
1− ei(k0−k∗0)x

]}
, (5.18a)

where the dimensional wavenumber is defined as

k = k0

(
1 +

i

6

ne

K
ωh0

)
, k0 = (1 + i)

(
neω

2Kh0

)1/2

. (5.18b)

Parlange et al. (1984) performed a set of laboratory experiments measuring the
surface water elevations in porous media driven by an oscillating piston in a reservoir
in contact with the porous media. The water level in the reservoir is oscillating with
period equal to 35 s. The static water level in the flume is h = 0.276 m and the wave
amplitude is a = 0.09 m. The ratio of the porosity to permeability is ne/K ≈ 34.5 s m−1.
They observed that steady periodic motions could be reached and presented their
measurements of the steady oscillating water levels at four locations in the porous
media. These experimental data are compared with our analytical solutions (5.18a) in
figure 2. The agreement between the analytical solutions and the experimental data
are very good. To demonstrate the effect of the high-order terms, the solutions with
µ2 = 0, which have also been obtained by Parlange et al. (1984) and Nielsen (1990),
are presented in the figure. The present solutions with the µ2-term show much better
agreement than that without it, especially far away from the boundary, x = 0.

6. Numerical solutions for the nonlinear equation
Because analytical solutions to the nonlinear diffusive wave equations are difficult

to obtain except under some special situations like the periodic problem described
in § 5, we have to employ numerical methods to solve the problem in general cases.
To solve the nonlinear diffusive wave equation (4.6b), we employ a numerical scheme
with a central finite difference method in space and a fourth-order Runge–Kutta
integration technique in time. Numerical solutions are discussed in this section.

6.1. Numerical scheme

Equation (4.6b) can be rewritten as

∂ψ

∂t
= F(ζ) (6.1a)
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Figure 1. Analytical solutions of the nonlinear equations with different parameters:
(a) ωt = 0; (b) ωt = π/2; (c) ωt = π; (d) ωt = 3π/2.

where

ψ =

(
1− 1

3
µ2h2 ∂

2

∂x2

)
ζ, F(ζ) = ε

[(
∂ζ

∂x

)2

+ ζ
∂2ζ

∂x2

]
− h∂

2ζ

∂x2
. (6.1b)

Then, ζ can be regarded as a function of ψ, i.e.

ζ(x, t) = f [ψ(x, t)] . (6.2)

In order to integrate (6.1a) numerically, we employ a simple second-order central
finite difference method to evaluate the spatial derivatives in (6.1b). By dividing the
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Figure 2. Water table in porous media at (a) x = 0 m; (b) x = 0.05 m; (c) x = 0.18 m;
(d) x = 0.335 m.

x-domain, 0 6 x 6 l, into N − 1 sections of equal length ∆x, the finite difference
formula for ψ(x, t) can be written from (6.1b) as

ψ(xn, t) = − µ2h2

3(∆x)2
ζ(xn−1, t) +

[
1 +

2µ2h2

3(∆x)2

]
ζ(xn, t)−

µ2h2

3(∆x)2
ζ(xn+1, t), (6.3a)

where

xn = n∆x, n = 0, 1, 2, · · · , N. (6.3b)

Equation (6.3) can be readily used to obtain ψ(x, t) when ζ(x, t) is known inside the
domain and appropriate boundary conditions for ζ are provided. On the other hand,
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if ψ(x, t) inside the domain and boundary conditions for ζ are given, (6.3) represents
a set of linear equations for ζ(xn, t). Hence, ζ(x, t) inside the domain can be found by
solving the linear equations given by (6.3). For the sake of convenience, we express
this process of obtaining ζ from ψ in the form of (6.2).

For the time integration of (6.1a) we use the fourth-order Runge–Kutta method
(RK4) to evaluate ψ at the next time level t+ ∆t, as follows (Press et al. 1992):

ψ(xn, t+ ∆t) = ψ(xn, t) + 1
6

[r1(xn, t) + 2r2(xn, t) + 2r3(xn, t) + r4(xn, t)] ∆t, (6.4a)

in which

r1(xn, t) = F [ζ(xn, t)] , (6.4b)

r2(xn, t) = F [ζ1 (xn, t)] , ζ1(xn, t) = f
[
ψ(xn, t) + 1

2
r1(xn, t)∆t

]
, (6.4c)

r3(xn, t) = F [ζ2 (xn, t)] , ζ2(xn, t) = f
[
ψ(xn, t) + 1

2
r2(xn, t)∆t

]
, (6.4d)

r4(xn, t) = F [ζ3(xn, t)] , ζ3(xn, t) = f [ψ(xn, t) + r3(xn, t)∆t] . (6.4e)

We reiterate here that ζ1, ζ2 and ζ3 in (6.4) are obtained by solving a set of linear
equation similar to (6.3). The process is represented by f(ψ). The function F(ζ) in (6.4)
denotes the evaluation of the F-term defined in (6.1b) by the central finite difference
scheme.

After obtaining ψ(x, t+ ∆t) from (6.4), we could find ζ(x, t+ ∆t) by solving the set
of linear equation, (6.3) at time level t + ∆t. Boundary conditions on ζ are enforced
through (6.3) in the process of the time integration.

Note that the truncation errors of the central finite difference scheme in space
and the fourth-order Runge–Kutta integration method in time are of O[(∆x)2] and
O[(∆t)5], respectively. In order to avoid the interference of the numerical discretization
errors with the dissipation and nonlinearity in the original equation (4.6b), we require
in the present numerical scheme that[

(∆x)2 ,∆t
]
� ε,

[
(∆x)2 ,∆t

]
� µ2. (6.5)

Hence, the numerical truncation errors will be much smaller than the effects of the
nonlinear and high-derivative terms in the nonlinear dispersive and diffusive wave
equation. Because of the dissipative nature of the aquifer the wave will be damped
out in several wavelengths, as demonstrated in § 4.1. In such a short distance, the
effects of the cumulative numerical truncation error on the numerical solutions is
negligible.

6.2. Comparisons of numerical results with analytical solutions and experimental data

To verify our numerical scheme, we first solve the nonlinear diffusive equation
(4.6b) for the tide-induced groundwater flow as described in § 5. By taking the
dimensionless physical parameters h = 1, ω = 2π and the numerical parameters,
∆t = 0.01, ∆x = 0.01, l = 6, the periodic numerical solutions for the water table in
the aquifer are compared in figure 3 with the perturbation solutions for two set of
the dimensionless parameters, ε and µ2, at fixed time. Figure 3 demonstrates that the
difference between the analytical solutions and the numerical solutions is negligible
for the case ε = µ2 = 0.1. The numerical results show slightly more diffusion than the
perturbation solution when ε = µ2 = 0.3.

Figure 4 presents the numerical solutions, the analytical solutions and the exper-
imental data for the periodic water table at x = 0.18 and 0.335 m as a function of
time t. In this numerical computation, we solved the dimensional nonlinear equation
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Figure 3. Comparison between numerial solutions and analtical solutions. The lines represent the
pertubation solution and the symbols are numerical solutions.

(4.7c) and employed the following numerical parameters ∆t = 0.01 s, ∆x = 0.005 m,
l = 2 m. Figure 4 demonstrates a reasonably good agreement among the numerical
results, analytical solutions and the experimental data. We remark here that for Par-
lange et al.’s experimental conditions, µ2 ≈ 0.27 and ε ≈ 0.33, the good agreement
between experiment data and theoretical results for significant magnitudes of ε and
µ2 demonstrates the apparent robustness of theory.

6.3. Reflection and transmission of a solitary wave by a porous breakwater

In this subsection, the weakly nonlinear equations derived in § 4 are employed to
investigate the effectiveness of porous breakwaters. Consider a solitary wave incident
normally on a porous breakwater with width b. The water depth is assumed to
be constant, h0. The objective is to find the relationship between the reflection and
transmission coefficients and the properties of the porous materials used in the
breakwater. In the free water regions, upstream and downstream of the breakwater,
the Boussinesq equations are employed (e.g. Whitham 1973):

∂ζ

∂t
+

∂

∂x
[(h0 + ζ) u] = 0, (6.6a)

∂u

∂t
+ u

∂u

∂x
+ g

∂ζ

∂x
− 1

3
h2

0

∂3u

∂x2∂t
= 0, (6.6b)

where u the depth-averaged velocity, and all the physical quantities are in the dimen-
sional form. Inside the porous breakwater, the following dimensional equations are
used:

ne

K

∂ζ

∂t
− ∂

∂x

(
ζ
∂ζ

∂x

)
− h0

∂2ζ

∂x2
− 1

3

h2
0ne

K

∂3ζ

∂x2∂t
= 0, (6.7a)
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Figure 4. Comparison among numerical results, analytical solutions and experimental data
(Parlange et al. 1984): (a) x = 0.18 m; (b) x = 0.335 m.

u+K
∂ζ

∂x
− 1

3
h2

0

∂2u

∂x2
= 0, (6.7b)

where (6.7a) is the same as (4.8c) and the equation for the depth-averaged velocity u,
(6.7b), has been obtained by averaging (3.10) over the entire water depth.

The permeability of the porous breakwater can be expressed as (Madsen 1974;
Vidal et al. 1988)

K =
g(

c1ν

d2ne
+

c2

dn2
e

Uc

) , (6.8)

where Uc is a characteristic velocity in the porous breakwater (see the Appendix), ν
the kinematic viscosity of pore water, d the diameter of the gravel comprising the
breakwater, and c1 and c1 are empirical coefficients,

c1 = α
(1− ne)3

ne
, c2 = β

(1− ne)
ne

, (6.9)

in which α and β are dimensionless constants. The two terms in the denominator of
(6.8) represent the effects of the laminar and turbulent resistance, respectively, in the
porous medium.
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Figure 5. Evolution of a solitary wave through a porous breakwater.

To facilitate the solutions of wave motions in different regions, interfacial boundary
conditions are enforced in the present numerical scheme, such that ζ and u as well
as their spacial derivatives are continuous across the interfaces between the shallow
water and the breakwater, respectively, i.e.

ζ|+ = ζ|− , u|+ = u|− , (6.10a)

∂ζ

∂x

∣∣∣∣
+

=
∂ζ

∂x

∣∣∣∣
−
,

∂u

∂x

∣∣∣∣
+

=
∂u

∂x

∣∣∣∣
−
, (6.10b)

where ± denote the left-hand side and the right-hand side of the interface, respectively.
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A similar numerical scheme to that in § 6.1 is employed to integrate the Boussinesq
equations, (6.6), simultaneously with the nonlinear wave equations, (6.7a). The shallow
water regions are assumed to extend to infinity so that the boundary effects can be
neglected.

Figure 5 shows the evolution of a solitary wave through a breakwater consisting
of gravel with d = 2.34 cm, ne = 0.44, α = 1092, β = 0.81, b = 20 cm, a = 3 cm,
h0 = 30 cm. The x-coordinate is scaled by (h3

0/a)
1/2, ζ by a and t by h0/ (ga)1/2. The

initial solitary wave profile is taken as (Whitham 1973)

ζ(x, 0) = a sech2

{(
3

4

)1/2
[(

a

h3
0

)1/2

x− 15

]}
, (6.11a)

u =

(
g

h0

)1/2 [(
1 +

1

2

a

h0

)
ζ(x, 0) +

1

h0

ζ2(x, 0)

]
. (6.11b)

The incident solitary wave is partially transmitted through and partially reflected
from the porous breakwater. The shapes of both the transmitted and reflected waves
are similar to solitary waves. Small trailing waves are developed in both reflected and
transmitted waves because of frequency dispersion.

Vidal et al. (1988) performed a series of laboratory experiments on solitary wave
transmission through porous breakwaters. The permeable breakwaters had rectangular
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Figure 6. Transmission and reflection of solitary waves by permeable breakwaters: ——, computed
maximum transmitted wave amplitude; – – –, computed maximum reflected wave amplitude, and
the symbols represent the experimental data from Vidal et al. (1988) for maximum transmitted
wave amplitude (a) gravel, d = 1.43 cm; (b) gravel, d = 2.43 cm; (c) permeable cubes with
sidelength = 3.15 cm.

form and were 20 to 40 cm thick. The tests were carried with gravel of d = 1.43, 2.43
cm and small cubic blocks of 3.15 cm side length. The measured porosities were
ne = 0.44 for gravel and ne = 0.42 for cubes. The water depth in the test flume varied
from 25 to 30 cm. The maximum wave amplitude was measured 200 cm downstream
of the porous structures. By taking α = 1092 and β = 0.81 which were recommended
by Vidal et al. (1988), the numerical results for the transmitted and reflected wave
amplitudes by present model are compared with Vidal et al.’s experiment data in
figures 6(a), 6(b) and 6(c), where the transmitted wave amplitude is scaled by the
incident wave amplitude. The scaled transmitted wave amplitude decreases as the
nonlinear effect and the thickness of the breakwater increase for all the cases. The
present numerical results are in very good with the experiment data. The reflected
wave amplitude increases with a/h0 when a/h0 < 0.2. As a/h0 further increases,
nonlinear effects becomes more significant and so does the frequency dispersion
induced by the breakwater. The reflected wave consists of a dominant wave with
some trailing waves (see figure 5). The amplitude of the trailing waves increases with
a/h0. Hence, the dominant reflected wave amplitude then decreases with the incident
wave amplitude.
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7. Concluding remarks
A two-dimensional fully nonlinear long-wave equation has been derived to describe

flow in a phreatic aquifer. Using the Boussinesq approximation a simplified equation
is derived for weakly nonlinear, dispersive and diffusive waves. The model equation
has been employed to investigate one-dimensional tide-induced fluctuation in aquifers
and the effectiveness of porous breakwaters. The numerical results of the present
model equation demonstrate good agreement with laboratory experiments. Although
only the one-dimensional problems are discussed in the paper, the model equation
can be applied to two-dimensional problems.

Appendix. Characteristic velocity in a porous breakwater
The resistance force in a porous breakwater is more of the Dupuit–Forchheimer

type than of Darcy type (e.g. Madsen 1974). Thus

FR =

(
c1ν

d2ne
+

c2

dn2
e

u

)
u. (A 1)

It is necessary to linearize the resistance formula in order to adapt the present theory.
As an approximation, we employ a characteristic velocity Uc and express the resistance
force as

F̂R =

(
c1ν

d2ne
+

c2

dn2
e

Uc

)
u. (A 2)

To find Uc, we require that the linearized and nonlinear resistance forces do the same
amount of work over the entire porous breakwater, i.e.∫ b

0

FRu dx =

∫ b

0

F̂Ru dx. (A 3)

Since the horizontal length scale of the solitary wave is much longer than the
width of the porous breakwater, it is reasonable to assume that the velocity inside the
breakwater varies linearly (Madsen 1974). Hence

u = (1 + γx)u0, (A 4)

where γ is a constant and u0 is the velocity at the upstream edge of the breakwater,
x = 0. Substituting (A 4) into (A 3) and integrating the resulting integrals yield

Uc =
3

4

(u4
b − u4

0)

(u3
b − u3

0)
, (A 5)

where ub is the velocity at the downstream face of the breakwater, x = b. Therefore
Uc is a constant in the entire breakwater, but it changes with time since ub and u0 are
functions of time.
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